Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons.

نویسندگان

  • Amanda J Foust
  • Yuguo Yu
  • Marko Popovic
  • Dejan Zecevic
  • David A McCormick
چکیده

The shape of action potentials invading presynaptic terminals, which can vary significantly from spike waveforms recorded at the soma, may critically influence the probability of synaptic neurotransmitter release. Revealing the conductances that determine spike shape in presynaptic boutons is important for understanding how changes in the electrochemical context in which a spike is generated, such as subthreshold depolarization spreading from the soma, can modulate synaptic strength. Utilizing recent improvements in the signal-to-noise ratio of voltage-sensitive dye imaging in mouse brain slices, we demonstrate that intracortical axon collaterals and en passant presynaptic terminals of layer 5 pyramidal cells exhibit a high density of Kv1 subunit-containing ion channels, which generate a slowly inactivating K(+) current critically important for spike repolarization in these compartments. Blockade of the current by low doses of 4-aminopyridine or α-dendrotoxin dramatically slows the falling phase of action potentials in axon collaterals and presynaptic boutons. Furthermore, subthreshold depolarization of the soma broadened action potentials in collaterals bearing presynaptic boutons, an effect abolished by blocking Kv1 channels with α-dendrotoxin. These results indicate that action potential-induced synaptic transmission may operate through a mix of analog-digital transmission owing to the properties of Kv1 channels in axon collaterals and presynaptic boutons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Kv channel subtypes contribute to differences in spike signaling properties in the axon initial segment and presynaptic boutons of cerebellar interneurons.

The discrete arrangement of voltage-gated K(+) (Kv) channels in axons may impart functional advantages in action potential (AP) signaling yet, in compact cell types, the organization of Kv channels is poorly understood. We find that in cerebellar stellate cell interneurons of mice, the composition and influence of Kv channels populating the axon is diverse and depends on location allowing axona...

متن کامل

Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization.

Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog-digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium inf...

متن کامل

Synapse-Level Determination of Action Potential Duration by K+ Channel Clustering in Axons

In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites, even within the same axon branch. The varicose geometry of SC boutons alone does not impose diffe...

متن کامل

Rapid State-Dependent Alteration in Kv3 Channel Availability Drives Flexible Synaptic Signaling Dependent on Somatic Subthreshold Depolarization.

In many neurons, subthreshold depolarization in the soma can transiently increase action-potential (AP)-evoked neurotransmission via analog-to-digital facilitation. The mechanisms underlying this form of short-term synaptic plasticity are unclear, in part, due to the relative inaccessibility of the axon to direct physiological interrogation. Using voltage imaging and patch-clamp recording from ...

متن کامل

Presynaptic Action Potential Amplification by Voltage-Gated Na+ Channels in Hippocampal Mossy Fiber Boutons

Action potentials in central neurons are initiated near the axon initial segment, propagate into the axon, and finally invade the presynaptic terminals, where they trigger transmitter release. Voltage-gated Na(+) channels are key determinants of excitability, but Na(+) channel density and properties in axons and presynaptic terminals of cortical neurons have not been examined yet. In hippocampa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 43  شماره 

صفحات  -

تاریخ انتشار 2011